

made up of
(a) (1) An LED TS , a N-type and p-type semiconductor
fused together. The p-type 75 connected to the
anode and the n-type connected to the cathode.
a thin wire connects the p-type to the cathode.
when a the semiconductor is fordwood brased,
the electron flows and at the junction drops down
from the conduction band to the valence band, releasing
its excess energy as light. a storice magnifying
material covers the semiconductor to magnify the
light emitted.
<u> </u>
ii) * An LED is much less likely to
break due to violent sharing,
a tost die 10 les solderig
components & wiving & prayile glass
composer to, so is used in aeroplanes
cre appropriace
LED's draw unch los voltje
B Course to the second to the

appropriete as signal lights such
as in a treffic light, which are
constately require to be opporedj.
* LED'S ARMBARA turning on \$
Switching off times are much
quicked thent that of light glab
aver leght warras of eight globes, tus
water is the west was for they may
ble useful as indication eights
Such on in a hospital, madrag switchig
on when something is wary.
It LED'S last for a meh longer
period of time than ordinary light
globes so in applications again
Such as traffic lytte, where hegelonly
Menjing soms afficult, LED'S would
be appropriate.
77

BOARD OF STUDIES	
1) As the illumination of light f	falling upon the
	lux from the
graph the resistance of the	•
	. ,
(i) V=IR	Data
R-V	TV= 12U
- 12 - 48xw3	I= 4.8×w-3 R= 2500J2
G=2500S	RIDR = 800R
at Zlux RLDR = 800,2	RR= ? 17002
PR = RT - RLOR	·
= 7500 - 800	
RR = 1700SL	
The resistance of the day is 1700sl.	
	(i) $V=IR$ $R=\frac{V}{I}$ $-\frac{12}{18xw^3}$ $R=2500\Omega$ $at Zlux R_{LDR}=800\Omega$ $\therefore R_R=R_I-R_{LDR}$ $=7500-800$ $R_R=1700\Omega$ $\therefore The veristance of the idea is 1700\Omega.$

C(i) an	ideal a	мp	has	infir	rite	gain
an idea	1 amp	a 150	has	infi	nite	input
resistance	so that	the	oculput	re51	stance	(1)
O. Input	vollage	should	4e	0 U	for	mertinan
gain.		·				

(1)	Vout	2.0	
	Vin	= -50×1025	
		-40 000	
		2 10,000	•

The output voltage is clipped secause the output voltage is clipped secause the input voltage has a greater range this is shown when imput voltage of 200 and 250 microvolt both produce output of -8 V. This would areate distortion from the output.

d) Thermionic devices were bulby, slow and complicated on large scales. Development and research led to the development of the tronsister which replaced the them thermionic devices. The transistor allowed adot more windows of oppurturity to be opened due to its small size and efficiency/reliability. It storted a rapid growth in electronics that relied on transistors as a building block. Computers benefited greatly as they could now be built smaller and quicker, resulting in a greater acceptance and wider use. With the development of integrated circuits which pack millions of transisturs into a small chip, Integrated

> computers have become much faster and cheoper to produce.

circuits are now getting even smaller as new 0.13 micron processing plants are opening allowing transistors to be closer and smaller than over before. The IC has allowed computers to reach a cost accessible to the home user and has ment a great increase in computers and our reliance upon them. Unfortunatly thre are alimitations to the development of IC's. As they get smaller and smaller distances between the inhall components light common no longer be used to each Him. It's possible that in the feature x-rays will allow ICS to continue to shrink and contain more transistors. Due to our leavy relience on Ic's it is almost guaranteed that future research will allow their continued development or a solution to replace and improve upon them. But for the time being computers have readed speeds of 3GHZ thanks to the impact of IC's which is more speed then most computer softwere will need for a great fine to corne