Marks

1

1

Question 25 (6 marks)

A pair of parallel metal plates, placed in a vacuum, are separated by a distance of 5.00×10^{-3} m and have a potential difference of 1000 V applied to them.

(a)

Calculate the magnitude of the electric field strength between the plates. $E = \sqrt{d} = \frac{1000}{5 \times 10^{-3}} = 2 \times 10^{5}$ -'. Electric field strength is 2 x 105 Vm-1

Calculate the magnitude of the electrostatic force acting on an electron between (b) the plates.

 $F = Eq = 2 \times 10^{5} \times 1.602 \times 10^{-19}$ $F = 3.204 \times 10^{-14} N$

A beam of electrons is fired with a velocity of 3.00×10^6 m s⁻¹ between the 4 (c) plates as shown. A magnetic field is applied between the plates, sufficient to cancel the force on the electron beam due to the electric field.

Beam of electrons 1000 V FB=FE AVB = AE V= E/B B = E/V = 2×105

Calculate the magnitude and direction of the magnetic field required between the plates to stop the deflection of the electron beam.

For undeflected beaun: FB = FE ie qVB = qE $B = \frac{E}{V}$ from (a) $E = 2 \times 10^5$ and $V = 3 \times 10^6$ $B = \frac{2 \times 10^5}{3 \times 10^4} = 0.06$

... The magnetic field magnitude is 0.07T (to 2dp)

The electric field alone forces the electrons up so the magnetic field must fare their down. Hence the bottom plate brust be a North pole