1

3

Question 19 (4 marks)

In one of Einstein's famous thought experiments, a passenger travels on a train that passes through a station at 60% of the speed of light. According to the passenger, the length of the train carriage is 22 m from front to rear.

(a)	A light in the train carriage is switched on. Compare the velocity of the light
	beam as seen by the passenger on the train and a rail worker standing on the
	station platform.
	the Velocity of light is absolute, so each
	observer would observe it at ~3 x 108 ms" regardless
	of their Grame of reference

(b)	Calculate the length of the carriage as observed by the rail worker on the station
	platform. $\int_{V}^{Z} \frac{\sqrt{Z}}{C^{2}}$
	(1 = 22) 1-(0.6C)2
	= 22 50-69
	= 22(0.8)
	= 17-6 m