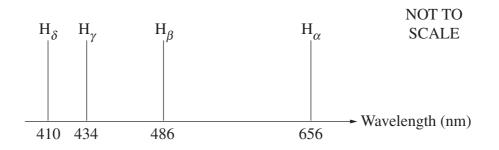

Question 31 — From Quanta to Quarks (25 marks)

- (a) (i) Describe Davisson and Germer's experiment that confirmed the 2 de Broglie hypothesis of wave-particle duality.
 - (ii) Explain the stability of the electron orbits in the Bohr atom, using de Broglie's hypothesis.

Marks

(b) The diagram shows the kinetic energy distribution of the electrons emitted in the β -decay of ²¹⁰₈₃Bi into ²¹⁰₈₄Po. The energy released during β -decay depends on the mass defect in the transmutation, as it does in nuclear fission.



- (i) Identify the scientist who suggested that the existence of the neutrino 1 relates to the need to account for the energy distribution of electrons emitted in β -decay.
- (ii) Use the data to calculate the mass defect in the β -decay of $\frac{210}{83}$ Bi. **2** (Assume that the neutrino is a massless particle.)
- (iii) Account for the energy distribution of electrons emitted in this β -decay. **3**

Question 31 continues on page 35

Question 31 (continued)

(c) The diagram represents the four spectral lines in the visible region of the hydrogen spectrum known as the Balmer Series.

- (i) Explain how the Balmer Series provides strong experimental evidence in support of Bohr's model of the hydrogen atom.
- (ii) Calculate the wavelength of the next line in the Balmer Series. **3**
- (d) Discuss how neutron scattering and ONE other process have been used to **7** increase our understanding of the structure of matter.

End of Question 31