Question 30 — Astrophysics (25 marks)

(a)	(i)	The star Algol is an eclipsing binary as viewed from Earth.	
		Describe the observations made by astronomers to identify a star as an eclipsing binary.	
	(ii)	Binary stars are important in determining stellar masses.	4
		Explain how the total mass of a binary star system can be calculated.	

(b) The table gives information about various nearby stars.

Star	Distance (parsecs)	Apparent visual magnitude	Colour Index
Proxima Centauri	1.29	11.01	1.90
Barnard's Star	1.82	9.54	1.74
Lalande 21185	2.55	7.49	1.51
Ross 154	2.97	10.37	1.75

- (i) Which star from the table is the most blue in colour?
- (ii) Calculate how much brighter Ross 154 is than Proxima Centauri when 2 viewed from Earth.
- (iii) Sketch a labelled diagram indicating the information required to use the trigonometric parallax method to determine the distance to Barnard's Star.

Question 30 continues on page 33

1

Question 30 (continued)

(c) An H-R diagram can be used to show the evolutionary track of stars.

- (i) Select the position *P*, *Q*, *R* or *S* on the H-R diagram in which white dwarfs would be found. Justify your choice.
- (ii) A white dwarf is considered to be in a stable condition. Explain why a white dwarf does not continue to shrink in size.
- (iii) Describe ONE nuclear reaction taking place in a star located on the main 2 sequence.
- (d) Discuss how the development of adaptive optics and at least one other development have improved resolution and sensitivity of ground based astronomy.

End of Question 30