2001 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

Section I – Part B (continued)

	Marks
Question 22 (6 marks)	
Justify the procedure you used to prepare an ester in a school laboratory. Include relevant chemical equations in your answer.	6
We used a process called esterification to	
produce an ester. We used mixed on acid, an	
alcohol and conventioned sulfure acid (as a catalyst)	
in a pear-shaped flask. Heating this produced an	
in a pear-shaped flask. Heating this produced an ester and Hzo. An example of this is mixing ethanol with ethanol	ic acid.
77	
H-C-C-H+ 0/C-C-H-> H-C-C-H 0/H	+ H2 0
н в н н	v
ethanol t ethanoic acid -> ethanoute	+ anter

3	

Question 23 (4 marks)

A household cleaning agent contains a weak base of general formula NaX. 1.00 g of this compound was dissolved in 100.0 mL of water. A 20.0 mL sample of the solution was titrated with 0.1000 mol L⁻¹ hydrochloric acid and required 24.4 mL of the acid for neutralisation.

(a)	What is the Brönsted-Lowry definition of a base?	1
	Brönsted-Louvy theory of a base states that it is a proton acceptor:	
(b)	What is the molar mass of this base?	3
(0)	what is the motal mass of this base: $1.00 g \rightarrow 100.0 \text{ m} \text{ of water}$	٠
	20 ml of sample litrated > 0.1000 mol/4	
	HC1 → 24.4ml.	
	$= 20.0 \text{m} \times 0.100 \text{om} = 2$	
	= 24.4 -2	
	= 12.2 ml	

Question 24 (6 marks)

In the early twentieth century, Fritz Haber developed a method for producing ammonia, as shown by the equation:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

(a)	Ammonia is used as a cleaning agent. State ONE other use of ammonia.	1
	8 b(071/x8)	
(b)	Explain the effect of liquefying the ammonia on the yield of the reaction.	2
	by liquelying the yield reaction takes longer therefore	
	yutel mireares to	
(c)	Explain why it is essential to monitor the temperature and pressure inside the reaction vessel.	3
	it temperature increases reactions rate is fresher	
	: yield is low	
	It pressure increased reachon is faster as well	
	" yuld is low	
	here heepery temperature and merrine constant a	
	correspondence can be met	