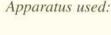
2001 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

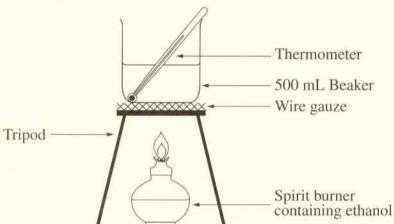
Section I (continued)

Part B – 60 marks Attempt Questions 16–27 Allow about 1 hour and 45 minutes for this part

Answer the questions in the spaces provided.

Show all relevant working in questions involving calculations.


	Marks
Question 16 (3 marks)	
Radioisotopes are used in industry, medicine and chemical analysis. For ONE of these fields, relate the use of a named radioisotope to its properties.	3
Technotium 99m is a radioisotope used in mediciona	
as a tracer in the blood stocam also other bodily	
systems it is ideal for use because of the	
bota radiation it reloaves and is trelative, short	
Laff life so it does not affect the body long term	
(0)	


2

Question 17 (6 marks)

Students were asked to perform a first-hand investigation to determine the molar heat of combustion of ethanol.

The following extract is from the practical report of one student.

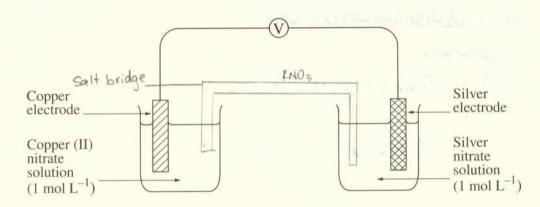
Lab data:

Mass of water = 250.0 g
Initial mass of burner = 221.4 g
Final mass of burner = 219.1 g
Initial temperature of water = 19.0°C
Final temperature of water = 59.0°C

- (a) After completing the calculations correctly, the student found that the answer did not agree with the value found in data books. Suggest ONE reason for this.

 There might be left form my eyetrem.
- (b) Propose TWO adjustments that could be made to the apparatus or experimental method to improve the accuracy of the results.

use a braker with a smaller spaning so that
less heat would be lost For measuring heat
change use caldiameter


Question 17 continues on page 11

(c)	Calculate the m	nolar heat of combustion of ethanol, usin	ng the s	student's data.	3
	AH	-=-ATXMXC		maro water = 250	00%
		=-40 x -250 x 4.18 x 102		mais expures used	U
		=-41800 J			
		4:0			
	molar heat	41800 3.83 x10-2		ethanol.	
	in the state of th	2 1691383 812 1/mol			
		,	******	MM: 60.05	
		, , , , , , , , , , , , , , , , , , ,	(=	2.5	
				60-05	
			n =	3.83 × 10-2	
		End of Question 17			
				J ka ' F"	

Please turn over

Question 18 (6 marks)

A galvanic cell was made by connecting two half-cells. One half-cell was made by putting a copper electrode in a copper (II) nitrate solution. The other half-cell was made by putting a silver electrode in a silver nitrate solution. The electrodes were connected to a voltmeter as shown in the diagram.

(a) Complete the above diagram by drawing a salt bridge.

. 2

1

(b) Using the *standard potentials* table in the data sheet, calculate the theoretical voltage of this galvanic cell.

 $E^{\circ} = E^{\circ} / E_{\circ} - E^{\circ}_{2}$ Ag $f + e^{-} \rightarrow Ag = 0.8V$ = 0.8 - (-0.34) Cu \rightarrow Cu²⁺tze⁻ -.34V = 1.14 V

(c) A student removes the voltmeter from the circuit and replaces it with an electrical generator. The generator causes the copper electrode to increase in mass. 3

Explain, using an equation, why the copper electrode will increase in mass.

The copper electrocle will increase in mess because there will be a boild up of electrons on the copper electrocle which will then reach with the copper ions in the copper nitrate solution $Cv^{2+} + 2e^- \rightarrow Cv$